Tuesday, April 28, 2009

Amusements in Mathematics (Part 4)

Amusements in Mathematics

(Part 4)

31.--DOMESTIC ECONOMY.

Young Mrs. Perkins, of Putney, writes to me as follows: "I should be
very glad if you could give me the answer to a little sum that has been
worrying me a good deal lately. Here it is: We have only been married a
short time, and now, at the end of two years from the time when we setup housekeeping, my husband tells me that he finds we have spent a third
of his yearly income in rent, rates, and taxes, one-half in domestic
expenses, and one-ninth in other ways. He has a balance of £190
remaining in the bank. I know this last, because he accidentally left
out his pass-book the other day, and I peeped into it. Don't you think
that a husband ought to give his wife his entire confidence in his money
matters? Well, I do; and--will you believe it?--he has never told me
what his income really is, and I want, very naturally, to find out. Can
you tell me what it is from the figures I have given you?"

Yes; the answer can certainly be given from the figures contained in
Mrs. Perkins's letter. And my readers, if not warned, will be
practically unanimous in declaring the income to be--something absurdly
in excess of the correct answer!


32.--THE EXCURSION TICKET PUZZLE.

When the big flaming placards were exhibited at the little provincial
railway station, announcing that the Great ---- Company would run cheap
excursion trains to London for the Christmas holidays, the inhabitants
of Mudley-cum-Turmits were in quite a flutter of excitement. Half an
hour before the train came in the little booking office was crowded with
country passengers, all bent on visiting their friends in the great
Metropolis. The booking clerk was unaccustomed to dealing with crowds of
such a dimension, and he told me afterwards, while wiping his manly
brow, that what caused him so much trouble was the fact that these
rustics paid their fares in such a lot of small money.

He said that he had enough farthings to supply a West End draper with
change for a week, and a sufficient number of threepenny pieces for the
congregations of three parish churches. "That excursion fare," said he,
"is nineteen shillings and ninepence, and I should like to know in just
how many different ways it is possible for such an amount to be paid inthe current coin of this realm."

Here, then, is a puzzle: In how many different ways may nineteen
shillings and ninepence be paid in our current coin? Remember that the
fourpenny-piece is not now current.


Amusements in Mathematics (Part 3)

21.--A DEAL IN APPLES.

I paid a man a shilling for some apples, but they were so small that I
made him throw in two extra apples. I find that made them cost just a
penny a dozen less than the first price he asked. How many apples did I
get for my shilling?


22.--A DEAL IN EGGS.

A man went recently into a dairyman's shop to buy eggs. He wanted them
of various qualities. The salesman had new-laid eggs at the high price
of fivepence each, fresh eggs at one penny each, eggs at a halfpenny
each, and eggs for electioneering purposes at a greatly reduced figure,
but as there was no election on at the time the buyer had no use for the
last. However, he bought some of each of the three other kinds and
obtained exactly one hundred eggs for eight and fourpence. Now, as he
brought away exactly the same number of eggs of two of the three
qualities, it is an interesting puzzle to determine just how many he
bought at each price.


23.--THE CHRISTMAS-BOXES.

Some years ago a man told me he had spent one hundred English silvercoins in Christmas-boxes, giving every person the same amount, and it
cost him exactly £1, 10s. 1d. Can you tell just how many persons
received the present, and how he could have managed the distribution?
That odd penny looks queer, but it is all right.


24.--A SHOPPING PERPLEXITY.

Two ladies went into a shop where, through some curious eccentricity, no
change was given, and made purchases amounting together to less than
five shillings. "Do you know," said one lady, "I find I shall require no
fewer than six current coins of the realm to pay for what I have
bought." The other lady considered a moment, and then exclaimed: "By a
peculiar coincidence, I am exactly in the same dilemma." "Then we will
pay the two bills together." But, to their astonishment, they still
required six coins. What is the smallest possible amount of their
purchases--both different?


25.--CHINESE MONEY.

The Chinese are a curious people, and have strange inverted ways of
doing things. It is said that they use a saw with an upward pressure
instead of a downward one, that they plane a deal board by pulling the
tool toward them instead of pushing it, and that in building a house
they first construct the roof and, having raised that into position,
proceed to work downwards. In money the currency of the country consists
of taels of fluctuating value. The tael became thinner and thinner until
2,000 of them piled together made less than three inches in height. The
common cash consists of brass coins of varying thicknesses, with a
round, square, or triangular hole in the centre, as in our illustration.

[Illustration]
These are strung on wires like buttons. Supposing that eleven coins with
round holes are worth fifteen ching-changs, that eleven with square
holes are worth sixteen ching-changs, and that eleven with triangular
holes are worth seventeen ching-changs, how can a Chinaman give me
change for half a crown, using no coins other than the three mentioned?
A ching-chang is worth exactly twopence and four-fifteenths of a
ching-chang.


26.--THE JUNIOR CLERK'S PUZZLE.

Two youths, bearing the pleasant names of Moggs and Snoggs, were
employed as junior clerks by a merchant in Mincing Lane. They were both
engaged at the same salary--that is, commencing at the rate of £50 a
year, payable half-yearly. Moggs had a yearly rise of £10, and Snoggs
was offered the same, only he asked, for reasons that do not concern our
puzzle, that he might take his rise at £2, 10s. half-yearly, to which
his employer (not, perhaps, unnaturally!) had no objection.

Now we come to the real point of the puzzle. Moggs put regularly into
the Post Office Savings Bank a certain proportion of his salary, while
Snoggs saved twice as great a proportion of his, and at the end of five
years they had together saved £268, 15s. How much had each saved? The
question of interest can be ignored.


27.--GIVING CHANGE.

Every one is familiar with the difficulties that frequently arise over
the giving of change, and how the assistance of a third person with a
few coins in his pocket will sometimes help us to set the matter right.
Here is an example. An Englishman went into a shop in New York and
bought goods at a cost of thirty-four cents. The only money he had was a
dollar, a three-cent piece, and a two-cent piece. The tradesman had onlya half-dollar and a quarter-dollar. But another customer happened to be
present, and when asked to help produced two dimes, a five-cent piece, a
two-cent piece, and a one-cent piece. How did the tradesman manage to
give change? For the benefit of those readers who are not familiar with
the American coinage, it is only necessary to say that a dollar is a
hundred cents and a dime ten cents. A puzzle of this kind should rarely
cause any difficulty if attacked in a proper manner.


28.--DEFECTIVE OBSERVATION.

Our observation of little things is frequently defective, and our
memories very liable to lapse. A certain judge recently remarked in a
case that he had no recollection whatever of putting the wedding-ring on
his wife's finger. Can you correctly answer these questions without
having the coins in sight? On which side of a penny is the date given?
Some people are so unobservant that, although they are handling the coin
nearly every day of their lives, they are at a loss to answer this
simple question. If I lay a penny flat on the table, how many other
pennies can I place around it, every one also lying flat on the table,
so that they all touch the first one? The geometrician will, of course,
give the answer at once, and not need to make any experiment. He will
also know that, since all circles are similar, the same answer will
necessarily apply to any coin. The next question is a most interesting
one to ask a company, each person writing down his answer on a slip of
paper, so that no one shall be helped by the answers of others. What is
the greatest number of three-penny-pieces that may be laid flat on the
surface of a half-crown, so that no piece lies on another or overlaps
the surface of the half-crown? It is amazing what a variety of different
answers one gets to this question. Very few people will be found to give
the correct number. Of course the answer must be given without looking
at the coins.

29.--THE BROKEN COINS.

A man had three coins--a sovereign, a shilling, and a penny--and he
found that exactly the same fraction of each coin had been broken away.
Now, assuming that the original intrinsic value of these coins was the
same as their nominal value--that is, that the sovereign was worth a
pound, the shilling worth a shilling, and the penny worth a penny--what
proportion of each coin has been lost if the value of the three
remaining fragments is exactly one pound?


30.--TWO QUESTIONS IN PROBABILITIES.

There is perhaps no class of puzzle over which people so frequently
blunder as that which involves what is called the theory of
probabilities. I will give two simple examples of the sort of puzzle I
mean. They are really quite easy, and yet many persons are tripped up by
them. A friend recently produced five pennies and said to me: "In
throwing these five pennies at the same time, what are the chances that
at least four of the coins will turn up either all heads or all tails?"
His own solution was quite wrong, but the correct answer ought not to be
hard to discover. Another person got a wrong answer to the following
little puzzle which I heard him propound: "A man placed three sovereigns
and one shilling in a bag. How much should be paid for permission to
draw one coin from it?" It is, of course, understood that you are as
likely to draw any one of the four coins as another.

Amusements in Mathematics (Part 2)

11.--THE CYCLISTS' FEAST.

'Twas last Bank Holiday, so I've been told,
Some cyclists rode abroad in glorious weather.
Resting at noon within a tavern old,
They all agreed to have a feast together.
"Put it all in one bill, mine host," they said,
"For every man an equal share will pay."
The bill was promptly on the table laid,
And four pounds was the reckoning that day.
But, sad to state, when they prepared to square,
'Twas found that two had sneaked outside and fled.
So, for two shillings more than his due share
Each honest man who had remained was bled.
They settled later with those rogues, no doubt.
How many were they when they first set out?


12.--A QUEER THING IN MONEY.

It will be found that £66, 6s. 6d. equals 15,918 pence. Now, the four
6's added together make 24, and the figures in 15,918 also add to 24. It
is a curious fact that there is only one other sum of money, in pounds,
shillings, and pence (all similarly repetitions of one figure), of whichthe digits shall add up the same as the digits of the amount in pence.
What is the other sum of money?


13.--A NEW MONEY PUZZLE.

The largest sum of money that can be written in pounds, shillings,
pence, and farthings, using each of the nine digits once and only once,
is £98,765, 4s. 3½d. Now, try to discover the smallest sum of money
that can be written down under precisely the same conditions. There must
be some value given for each denomination--pounds, shillings, pence,
and farthings--and the nought may not be used. It requires just a little
judgment and thought.


14.--SQUARE MONEY.

"This is queer," said McCrank to his friend. "Twopence added to twopence
is fourpence, and twopence multiplied by twopence is also fourpence." Of
course, he was wrong in thinking you can multiply money by money. The
multiplier must be regarded as an abstract number. It is true that two
feet multiplied by two feet will make four square feet. Similarly, two
pence multiplied by two pence will produce four square pence! And it
will perplex the reader to say what a "square penny" is. But we will
assume for the purposes of our puzzle that twopence multiplied by
twopence is fourpence. Now, what two amounts of money will produce the
next smallest possible result, the same in both cases, when added or
multiplied in this manner? The two amounts need not be alike, but they
must be those that can be paid in current coins of the realm.


15.--POCKET MONEY.

What is the largest sum of money--all in current silver coins and nofour-shilling piece--that I could have in my pocket without being able
to give change for a half-sovereign?

16.--THE MILLIONAIRE'S PERPLEXITY.

Mr. Morgan G. Bloomgarten, the millionaire, known in the States as the
Clam King, had, for his sins, more money than he knew what to do with.
It bored him. So he determined to persecute some of his poor but happy
friends with it. They had never done him any harm, but he resolved to
inoculate them with the "source of all evil." He therefore proposed to
distribute a million dollars among them and watch them go rapidly to the
bad. But he was a man of strange fancies and superstitions, and it was
an inviolable rule with him never to make a gift that was not either one
dollar or some power of seven--such as 7, 49, 343, 2,401, which numbers
of dollars are produced by simply multiplying sevens together. Another
rule of his was that he would never give more than six persons exactly
the same sum. Now, how was he to distribute the 1,000,000 dollars? You
may distribute the money among as many people as you like, under the
conditions given.

17.--THE PUZZLING MONEY-BOXES.

Four brothers--named John, William, Charles, and Thomas--had each a
money-box. The boxes were all given to them on the same day, and they at
once put what money they had into them; only, as the boxes were not very
large, they first changed the money into as few coins as possible. After
they had done this, they told one another how much money they had saved,
and it was found that if John had had 2s. more in his box than at
present, if William had had 2s. less, if Charles had had twice as much,
and if Thomas had had half as much, they would all have had exactly the
same amount.

Now, when I add that all four boxes together contained 45s., and that
there were only six coins in all in them, it becomes an entertainingpuzzle to discover just what coins were in each box.


18.--THE MARKET WOMEN.

A number of market women sold their various products at a certain price
per pound (different in every case), and each received the same
amount--2s. 2½d. What is the greatest number of women there could
have been? The price per pound in every case must be such as could be
paid in current money.


19.--THE NEW YEAR'S EVE SUPPERS.

The proprietor of a small London café has given me some interesting
figures. He says that the ladies who come alone to his place for
refreshment spend each on an average eighteenpence, that the
unaccompanied men spend half a crown each, and that when a gentleman
brings in a lady he spends half a guinea. On New Year's Eve he supplied
suppers to twenty-five persons, and took five pounds in all. Now,
assuming his averages to have held good in every case, how was his
company made up on that occasion? Of course, only single gentlemen,
single ladies, and pairs (a lady and gentleman) can be supposed to have
been present, as we are not considering larger parties.


20.--BEEF AND SAUSAGES.

"A neighbour of mine," said Aunt Jane, "bought a certain quantity of
beef at two shillings a pound, and the same quantity of sausages at
eighteenpence a pound. I pointed out to her that if she had divided the
same money equally between beef and sausages she would have gained two
pounds in the total weight. Can you tell me exactly how much she spent?"
"Of course, it is no business of mine," said Mrs. Sunniborne; "but a
lady who could pay such prices must be somewhat inexperienced in
domestic economy."

"I quite agree, my dear," Aunt Jane replied, "but you see that is not
the precise point under discussion, any more than the name and morals of
the tradesman."

Amusements in Mathematics (Part 1)

ARITHMETICAL AND ALGEBRAICAL PROBLEMS.

"And what was he?
Forsooth, a great arithmetician."
_Othello_, I. i.


The puzzles in this department are roughly thrown together in classes
for the convenience of the reader. Some are very easy, others quite
difficult. But they are not arranged in any order of difficulty--and
this is intentional, for it is well that the solver should not be warned
that a puzzle is just what it seems to be. It may, therefore, prove to
be quite as simple as it looks, or it may contain some pitfall into
which, through want of care or over-confidence, we may stumble.

Also, the arithmetical and algebraical puzzles are not separated in the
manner adopted by some authors, who arbitrarily require certain problems
to be solved by one method or the other. The reader is left to make hisown choice and determine which puzzles are capable of being solved by
him on purely arithmetical lines.






MONEY PUZZLES.

"Put not your trust in money, but put your money in trust."

OLIVER WENDELL HOLMES.


1.--A POST-OFFICE PERPLEXITY.

In every business of life we are occasionally perplexed by some chance
question that for the moment staggers us. I quite pitied a young lady in
a branch post-office when a gentleman entered and deposited a crown on
the counter with this request: "Please give me some twopenny stamps, six
times as many penny stamps, and make up the rest of the money in
twopence-halfpenny stamps." For a moment she seemed bewildered, then her
brain cleared, and with a smile she handed over stamps in exact
fulfilment of the order. How long would it have taken you to think it
out?


2.--YOUTHFUL PRECOCITY.

The precocity of some youths is surprising. One is disposed to say on
occasion, "That boy of yours is a genius, and he is certain to do great
things when he grows up;" but past experience has taught us that he
invariably becomes quite an ordinary citizen. It is so often the case,on the contrary, that the dull boy becomes a great man. You never can
tell. Nature loves to present to us these queer paradoxes. It is well
known that those wonderful "lightning calculators," who now and again
surprise the world by their feats, lose all their mysterious powers
directly they are taught the elementary rules of arithmetic.

A boy who was demolishing a choice banana was approached by a young
friend, who, regarding him with envious eyes, asked, "How much did you
pay for that banana, Fred?" The prompt answer was quite remarkable in
its way: "The man what I bought it of receives just half as many
sixpences for sixteen dozen dozen bananas as he gives bananas for a
fiver."

Now, how long will it take the reader to say correctly just how much
Fred paid for his rare and refreshing fruit?


3.--AT A CATTLE MARKET.

Three countrymen met at a cattle market. "Look here," said Hodge to
Jakes, "I'll give you six of my pigs for one of your horses, and then
you'll have twice as many animals here as I've got." "If that's your
way of doing business," said Durrant to Hodge, "I'll give you fourteen
of my sheep for a horse, and then you'll have three times as many
animals as I." "Well, I'll go better than that," said Jakes to Durrant;
"I'll give you four cows for a horse, and then you'll have six times as
many animals as I've got here."

No doubt this was a very primitive way of bartering animals, but it is
an interesting little puzzle to discover just how many animals Jakes,
Hodge, and Durrant must have taken to the cattle market.


4.--THE BEANFEAST PUZZLE.
A number of men went out together on a bean-feast. There were four
parties invited--namely, 25 cobblers, 20 tailors, 18 hatters, and 12
glovers. They spent altogether £6, 13s. It was found that five cobblers
spent as much as four tailors; that twelve tailors spent as much as nine
hatters; and that six hatters spent as much as eight glovers. The puzzle
is to find out how much each of the four parties spent.


5.--A QUEER COINCIDENCE.

Seven men, whose names were Adams, Baker, Carter, Dobson, Edwards,
Francis, and Gudgeon, were recently engaged in play. The name of the
particular game is of no consequence. They had agreed that whenever a
player won a game he should double the money of each of the other
players--that is, he was to give the players just as much money as they
had already in their pockets. They played seven games, and, strange to
say, each won a game in turn, in the order in which their names are
given. But a more curious coincidence is this--that when they had
finished play each of the seven men had exactly the same amount--two
shillings and eightpence--in his pocket. The puzzle is to find out how
much money each man had with him before he sat down to play.


6.--A CHARITABLE BEQUEST.

A man left instructions to his executors to distribute once a year
exactly fifty-five shillings among the poor of his parish; but they were
only to continue the gift so long as they could make it in different
ways, always giving eighteenpence each to a number of women and half a
crown each to men. During how many years could the charity be
administered? Of course, by "different ways" is meant a different number
of men and women every time.

7.--THE WIDOW'S LEGACY.

A gentleman who recently died left the sum of £8,000 to be divided among
his widow, five sons, and four daughters. He directed that every son
should receive three times as much as a daughter, and that every
daughter should have twice as much as their mother. What was the widow's
share?


8.--INDISCRIMINATE CHARITY.

A charitable gentleman, on his way home one night, was appealed to by
three needy persons in succession for assistance. To the first person he
gave one penny more than half the money he had in his pocket; to the
second person he gave twopence more than half the money he then had in
his pocket; and to the third person he handed over threepence more than
half of what he had left. On entering his house he had only one penny in
his pocket. Now, can you say exactly how much money that gentleman had
on him when he started for home?


9.--THE TWO AEROPLANES.

A man recently bought two aeroplanes, but afterwards found that they
would not answer the purpose for which he wanted them. So he sold them
for £600 each, making a loss of 20 per cent. on one machine and a profit
of 20 per cent. on the other. Did he make a profit on the whole
transaction, or a loss? And how much?


10.--BUYING PRESENTS.

"Whom do you think I met in town last week, Brother William?" said UncleBenjamin. "That old skinflint Jorkins. His family had been taking him
around buying Christmas presents. He said to me, 'Why cannot the
government abolish Christmas, and make the giving of presents punishable
by law? I came out this morning with a certain amount of money in my
pocket, and I find I have spent just half of it. In fact, if you will
believe me, I take home just as many shillings as I had pounds, and half
as many pounds as I had shillings. It is monstrous!'" Can you say
exactly how much money Jorkins had spent on those presents?